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Appendix D where

Meteorological Relationships
RH

relative humidity, percent
D-1. Water Vapor in Air

€,

= vapor pressure of the air
a. Vapor pressure and saturationWater vapor

present in the atmosphere is measured in terms of the &
partial pressure exerted by the gas, known as the vapor o _
pressure. As the amount of vapor increases for a giveRelative humidity is measured by a sling psychrometer,
temperature, the pressure increases until it reaches‘#hich contains two thermometers, one in which the
state of equilibrium with a liquid water surface at that bulb is covered with a cloth wetted with distilled water.

temperature.  This is called the saturation ValoorThe dry bulb will indicate the air temperature, and the
pressure. Saturation vapor pressure is specificallyvet bulb will be cooled below the air temperature by
related to temperature, as shown in Table D-1. VapofVvaporation. The amount of evaporation will depend

pressures are commonly measured in terms of millibar§/Pon how saturated the air is. Tables are available to
of pressure. relate the difference—the wet bulb depression—to

relative humidity.

saturated vapor at the temperature of the air

Table D1

Saturation Vapor Pressure (mb) Over Water and Over Ice (after c. Dew point. The temperature at which the air
Byers 1974) must be cooled to become saturated is called the dew-
Temperature, °C Over Water Over Ice point temperature. Since the temperature of the dew
-10 2.863 2.597 point is related to vapor pressure, it is used as a
5 4215 4015 surrogate for vapor pressure in snowmelt equations.
Dew point can be computed from relative humidity and
0 6.108 6.108 air temperature as shown in Figure D-1.
> 8.719 D-2. Solar Radiation
10 12.272

a. Solar constant.The solar constant is defined
15 17.044 as the rate of radiant solar energy flux received outside
the Earth’s atmosphere on a surface normal to the Sun’s
rays. Atthe mean distance from the Sun, this value is
25 31.671 1.35 kW/n%, or 1.94 cal/(cth min) (1.94 ly/min). This
value varies about 7 percent during the year primarily
because of the changing distance between the Earth and

35 56.236 Sun.

20 23.373

30 42.430

b. Incident radiation. The spectral distribution
b. Relative humidity. The relative humidity is (Planck Curve) of the theoretical radiation emitted by

defined as the ratio of the measured water vapo}he sun is shown in Figure D-2. Solar radiation

content of the air at a specified temperature to the(shortwave) radiation generally encompasses. the
wavelength range of 0.2 to 2.2 um. Radiation emitted

saturated vapor content at that temperature. It can bg _
computed by the ratio of vapor pressures: Py the atmosphere and Earth (long-wave radiation) has

a wavelength range of 6.8 to 100 pm

RH:% x 100 (1) Solar radiation received at the Earth’s surface
& is actually made up of both direct solar radiation, plus a
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Figure D-1. Dew-point temperature as a function of air temperature and relative humidity

mall component that is scattered by the atmosphere square meter per day. An older convention, used in
(diffuse or sky radiation). The rate at which the total isSnow Hydrologyis g-cal/(cm min), or langleys (ly)
received on a horizontal surface is termed insolation. per minute, where a langley is equivalent to
This is expressed as a flux per unit area (flux density), 1 g-cal/lcm . Another term used to express flux density
such as watts per square meter or megadoules per is irradiance. Table D-2 summarizes the comparisons

D-2
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Figure D-2. Spectral distribution (Planck Curve) of the Sun’s radiation (Figure 2,
Plate 5-1, Snow Hydrology )
among three common conventions for expressing (2) Insolation magnitude depends upon the solar

insolation. Table D-3 contains typical values of daily constant, the angle of the Sun’s rays (a function of
insolation at 458 north latitude for conditions outside season and latitude), and the amount of depletion in the
the atmosphere, and for the Earth’s surface assuming a atmosphere. Depletion results from absorption by gas
cloudless sky at the maximum (spring equinox) and molecules, dust, smoke, etc., and cloud particles.

minimum (winter equinox) sun angles. Clouds have by far the greatest effect in reducing the
amount of radiation energy received on Earth. Fig-
Table D2 ure D-3 shows the daily insolation amounts outside of
Conversion Factors for Insolation Units the atmosphere, before attenuation by the atmosphere.
ly/day The effect of atmospheric influences under cloudless

cal/(cm %day) mJ/(m ?day)  W/m ?

skies is shown on Figure D-4, which is based upon

1 lyiday = ! 004186 04844 measurements at the Central Sierra Snow Laboratory.
1ml(m>day)=  23.89 1 11.57
(3) The effect of clouds on solar radiation received
LWim = 2.064 0.0864 1 can be quite pronounced and highly variable. Two
factors, the amount of cloud cover (percent of sky
covered) and the cloud height, are involved. Fig-
Table D-3 ure D-5 illustrates the effect of cloud height and cover.
Typical Daily Insolation Values
For Latitude 45 ° N Langleys mJ/m * Wim ? (4) Another determinant for solar radiation falling
Top of atmosphere, 21 June 990 41 480 upon a surface is the slope of the surface itself. In the
northern hemisphere, it is obvious that a south-facing
Top of atmosphere, 20 Dec 250 11 120

slope will receive more solar radiation than a north-
Earth’s surface, 21 June 750 31 360 facing slope of the same magnitude. This effect is more
pronounced in the winter. Figure D-6 illustrates the

Earth's surface, 20 Dec 200 8 97 effect of slope on incident solar radiation for latitude
! For a horizontal surface and a clear day. 46° 30' N

D-3
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Figure D-3. Seasonal and latitudinal variation of solar radiation outside the Earth’s
atmosphere (Figure 3, Plate 5-1,

Snow Hydrology )
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Figure D-4. Seasonal variation in insolation at the Central Sierra Snow Laboratory,
showing atmospheric depletion (Figure 4, Plate 5-1,

Snow Hydrology )
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(5) Forest cover also plays an important part in the
amount of solar energy that reaches the snow surface.
For only coniferous forests, the transmission percentage
varies with the season, because of variation in the
shading effect of the trees with the solar altitude. The
determination of the amount of sunshine transmitted
through the forest is at best approximate. Figure D-7
shows a mean transmission curve for daily insolation
amounts, expressed in terms of forest canopy density.
In the generalized snowmelt equations, the
transmission coefficient and forest density are
combined into a single factdét, which is termed the
effective forest cover.

(6) One way of expressing the effect of cloud
cover is in terms of percentage of possible sunshine.
With this as a variable, a practical nomograph has been
developed to estimate daily insolation as a function of
latitude and season. This is shown in Figure D-8.

and amount of cloud cover (Figure 5, Plate 5-1,  Snow
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(Figure 5, Plate 5-1, Snow Hydrology )
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Figure D-7. Transmission of solar energy by a forest
canopy (Figure 1, Plate 5-2, Snow Hydrology )

D-3. Long-wave Radiation

nearly a blackbody, the outgoing long-wave radiation is
essentially a constant, computed by Stephen’s law as
0.45 ly/min. Back-radiation (towards the Earth) is
emitted by the atmosphere, clouds, and forest cover and
is a complex phenomenon that must be computed
experimentally. The net long-wave radiation is equal to
outgoing radiation flux less back-radiation.

a. Net radiation from clear skieRRadiation from

the atmosphere can be expressed in terms of the tem-
perature of the air and its moisture content, the latter
measured by vapor pressure of the air. Figure D-10,
based upon experimental evidence, illustrates the net
radiation associated with open clear skies. This shows
that most of the time there is an outgoing flux of
radiation under clear skies—the air temperature must
be 69°F for a gain to the snowpack to occur.

b. Net radiation with cloud coverFigure D-11 is
a curve representing the theoretical net exchange under
overcast skies, which are assumed to be radiating as a
blackbody. This curve further illustrates the effect of
cloudy skies in reducing the radiation loss that would
occur for the same temperature under clear skies.

c. Net radiation with forest coverThe presence
of a forest canopy is a somewhat similar situation to
that of cloud cover with regard to net radiation
exchange with the snowpack. The canopy, if a solid

Long-wave or thermal radiation, emitted by the sky andcover, absorbs and emits all possible radiation, acting at
Earth, encompasses wavelengths from about 6.8 tthe temperature of the tree leaves, which is
50 um. Figure D-9 is the spectral distribution of radia-approximately the ambient air temperature. This effect

tion intensity for a blackbody at®C, which is approxi-
mately equivalent to melting snow. Since snow is

is illustrated in Figure D-12.
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